$.1 \mid 1.1 / 1$. cisco

Дизайн ЛВС - практика
(II) на примере несложной сети

Постановка задачи
Разработка топологии
Группировка хостов
Переподписка

## Соединения

Логическая структура
Проверка сходимости

## Organize requirements

When configuring the network, organize the requirements based on the following information.
First, check the requirements of the network service that provides the network.

- Type and number of endpoints to be accommodated
- Segmentation / Filtering (By grouping on the same terminal, it will lead to simplification of the settings to be input to the device.)
- Authentication for users and devices (Authentication flow becomes clear, and it leads to a decrease in switches with necessary functions that tend to be expensive.)
- Equipment layout (consider restrictions in the physical environment)
- Required bandwidth and acceptable oversubscription
- Cost calculation

Next, check the location and scope of the network to understand the scale of construction.
Distance and size are important requirements related to equipment selection and number of units.
Location and number of comms rooms, Building/Floor/Range of area within floor
© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

## Reference: Design elements considered in the requirements

- Spatial range for network construction
- Bases, buildings, floors, areas within floors, etc.
- Network services to be provided
- Number of ports
- Speed/oversubscription
- Network segmentation
- Filtering (which packet to pass)
- Presence / absence of authentication, authentication method
- PoE/UPoE
- Type and number of endpoints

■ Types

- Desktop computer
- IP phone
- Video terminal
- Printer
- Camera
- etc.

Number of each
■ Environment / Constraints: Check switch installation location

- Wiring closet
- Server room
- Rack configuration

■ Environment / Constraints: In-floor cabling

■ Existing / new
■ Splice box

- UTP
- category
- cable length
- Patch panel

■ Environment / Constraints: Floor-tofloor cabling

■ Existing / new

- Cable type (SMF / MMF / UTP)
- Optic type DSF, NZ-DSF
- Cable length

■ Splice box

## Access layer configuration example

Organize your requirements using two specific campus network examples.

## A) small-scale configuration scenario

- Requirements for network services
-     * Types and number of endpoints to accommodate (see figure below)
- Required bandwidth
- PC: 1 Gbps, Printer: 500 Kbps , IP Phone: 100 Kbps
- Requirement 2: Confirmation of location and scope of network provision
- 1 building 2 floors


## B) large-scale configuration scenario

- Requirements for network services
-     * Types and number of endpoints to accommodate (see figure below)
- Required bandwidth
- PC: 1Gbps, Printer: 500Kbps, IP Phone: 100 Kbps
- Requirement 2: Confirmation of location and scope of network provision
- 1 building
- 4 floors

| 4F | 700 PC / Printer 80 IP Phone |
| :---: | :---: |
| 3 F | 1000 PC / Printer 160 IP Phone |
| 2 F | 1000 PC / Printer 160 IP Phone |
| 1F | 400 PC / Printer 80 IP Phone |

[^0]
## Endpoint grouping

Group endpoints according to requirements. Grouping is essential to determine the optimal access switch model, number, and accommodation method.

## Need for grouping:

- Optimal distribution of endpoints to access switches to accommodate them and distribute the extent of failure appropriately
- It is possible to clarify the required number of functions required for access switches (eg, with or without PoE), which leads to cost reduction by consolidating switch model numbers.
- Bringing together the same endpoints simplifies the configuration pattern for each switch, clarifies the communication flow, and realizes a network that is less prone to failure and easier to manage.


## The endpoint grouping policy is roughly divided into the following three.

1. Classification of endpoint types
2. Place to mount
3. Redundant distribution

## Classification of endpoint types

In order to simplify the setting / select the accommodation switch with the appropriate function, the following policy is summarized.

- Unify with the same endpoint type. If you mix too much, the setting will be complicated, so we recommend up to two types.
- Consolidate endpoints that require PoE as much as possible to minimize the number of PoE model number switches and reduce costs.
- Spread the same endpoint type across two or more switches. This is to prevent endpoints in the same floor area from being completely cut off due to a single switch failure.


## Allocate grouped endpoints

1. Endpoints also have various extra attributes

- General users / High-end users (broadband) / Users who handle confidential information
- IP Phones (PoE)
- Video conferencing (wideband, using QoS )
- Printer
(with burst traffic)

2. Place to mount

Grouping optimizes the distance between the endpoint and the access switch. Secure location.
3. Redundant distribution

Divide groups to prevent endpoints within the same floor area from being completely disrupted due to a single switch failure. (Refer to the figure on the previous page for an example of the results of grouping.)

We recommend that you estimate the number of access switch ports that accommodate endpoints as follows.

- For 24-port model: 20 ports accommodated, 4 ports spare
- For 48-port model: 40 ports accommodated, 8 ports spare

3-4F


Select an access switch based on grouping

Assign access switches to the segregated end groups with the above expected number of accommodated ports. The results are shown in the figure on the right.

[^1]
## Calculate the total bandwidth for each switch

By allocating endpoint groups to access switches, each access switch uplink determines the total amount of bandwidth required.

Determine the total bandwidth according to the following points.

- Determine the required bandwidth for each endpoint

| - PC | $: 1 \mathrm{Gbps}$ |  |
| :--- | :--- | :--- |
| - IP Phone | $: 100 \mathrm{Kbps}$ |  |
| - | Desktop video conferencing terminal | $: 5 \mathrm{Mbps}$ |
| - | Printer | $: 500 \mathrm{Kbps}$ |

- Consider changes in the nature of traffic over time
- Burst type: A large amount of traffic flows temporarily Example: Web traffic
- Real-time type: Traffic that cannot tolerate delay. Example: Video conferencing

- Consider the amount of bandwidth that can handle future changes in network usage ( Assuming a situation where the quality of network services cannot be maintained even if QoS is used )
- Introducing video conferencing
- Use of VDI, etc.


## Determine uplink bandwidth based on oversubscription ratio

Once you know the overall bandwidth, consider the oversubscription ratio and decide which bandwidth to provide on the uplink.
(Oversubscription ratio may vary by endpoint group depending on requirements)

- For PC: bandwidth-focused 1:1 non-blocking to cost-focused 20:1 can be considered according to your requirements.
Older design guides said it was 20:1, but it's not a good idea to scrutinize the oversubscription ratio for each endpoint group to reduce costs. This is because the cost per bandwidth is now dropping significantly. (Example: 10G)
- For latency-sensitive IP phones, video conferencing terminals, etc., 1: 1 with no oversubscription is recommended.

Once the oversubscription is determined, the uplink bandwidth can be considered to determine the number of uplinks required and the specific oversubscription value can be calculated.

Examples of uplink types are as follows.

- 2/4 links x 1 / 10 G
- ( In some cases, $2 \times 40 \mathrm{G}$ etc. )

With the above, the number of ports required for the access switch, the type of port, and the amount of bandwidth required for the uplink have been determined. When selecting an access switch, considering the config of the uplink requires distribution information, which will be explained in the next chapter. Therefore, in this chapter, the access switch is tentatively decided.


## Case study (access layer)

A) small-scale configuration scenario

| $2 F$ | $250 \mathrm{PC} /$ Printer |
| :---: | :---: |
|  | 50 IP Phone |
|  | $250 \mathrm{PC} /$ Printer |
| 50 IP Phone |  |

Group endpoints according to requirements.
Classification of endpoint types:

- Presence / absence of PoE
- Place to place: 1/2 Floor
- Redundant distribution: Yes

36 devices / 1 switch


With PoE 100 IP Phone 25 devices / 1 Switch


## B) large-scale configuration scenario

Group endpoints according to requirements Classification of endpoint types:

- Presence / absence of PoE
- Place to place: 1-2/3-4 Floor; East/West
- Redundant distribution: Yes 1-2F




1-2F West


3* 48 port switch with POE


## Distribution Layer Configuration

The distribution aggregates the various uplink types from the access layer and passes them to the core. When using existing wiring, it is necessary to consider the location of the distribution switch and its conditions.

- Oversubscription varies by endpoint

Even within the same LAN network design, the bandwidth requirements (oversubscription ratio) required for each group of endpoints may differ. Endpoints that require a wider bandwidth than typical endpoints require a lower oversubscription ratio (1: 1-2: 1)

- About future expansion

You need to consider expanding the access switch and increasing the bandwidth of the access switch uplink. Increasing bandwidth from 1G to 10G to 40 G by replacing transceivers is recommended because it is easy to manage and to work with.

- Utilization of stack technology

The distribution switch is premised on the utilization of StackWise and StackWise Virtual. The benefits of operating the distribution as a single logical switch are described earlier.

- StackWise Virtual - reminder

It is a function that realizes StackWise by using the conventional port without using the Stack cable. Therefore, it is necessary to secure a separate interfaces for StackWise Virtual.

[^2]

## Determine connections Access<->Distribution

Determine the connection method between access and distribution. This determines the access uplink method and the access switch model.
After checking the required bandwidth, decide the distance, media (cable), and connection method. (Required bandwidth is determined in the access chapter).

* The distance used depends on the required distance, such as inter-floor wiring, intra-floor wiring, and indoor wiring.
- Check whether the media (cable) is the existing wiring or the new wiring. If it is new, select from the following:
- Multimode fiber OM1, OM2, OM3, OM4
- $\quad$ Single mode fiber G. 625
- UTP category 5E, 6, 6A, 7
- Select the connection method.
- MMF 10GBASE-SR, 10GBASE-LRM, 1000BASE-SX
- SMF 10GBASE-LR, 1000BASE-LX
- UTP 1000BASE-T

Based on the above information, determine the access switch equipment and the transceiver to be used for the access switch uplink.

## Considering uplinks from distribution

When considering the uplink bandwidth between the distribution and the core, various factors are taken into consideration, such as the amount of bandwidth used for cloud services and the use of QoS to make it appear that there is no oversubscription from the endpoint side. Will be done.

■ Oversubscription ratio
Try to keep it in the range of 1:1 to 4:1. If you introduce a wideband link, the uplink may be excessive, but this is not a problem.

- Uplink review

Determine the oversubscription based on the required bandwidth and select the uplink type. You have the option of forming a channel or choosing more bandwidth.

- $10 \mathrm{G} / 40 \mathrm{G} / 100 \mathrm{G}$
- Etherchannels (Example: In the case of 40G, 4 * 10G or 1 * 40G)
- If you have an existing cabling system

You should carefully consider oversubscription and decide which distribution switch use to aggregate.


Taking the above into consideration, the final decision on the model of the distribution switch is made.

## | Case study (distribution layer)

## A) small-scale configuration scenario

Since the A configuration has a small number of ports, it is completed with a two-layer configuration in which one switch has both core and distribution roles.

Each distribution switch accommodates 22 uplinks from the access switch.


Access

## B) large-scale configuration scenario

Between access and distribution, if uplink 10G * 2 is adopted for each access switch that accommodates 40 terminals, the oversubscription 40G:20G is approximately 2:1. C9500-40X was selected to accommodate 21 or 25 10G uplinks from the access switches per distribution switch.


## Core - Distribution: Determine the connection Select the model of the core switch

Next, the core device is determined by determining the connection method between the cores from the distribution.

- After confirming the required bandwidth, decide the distance, the cable to be used, and the connection method.
- The media and connection method used for the distance differ depending on the required distance, such as inter-floor wiring, intra-floor wiring, and indoor wiring.
- Check whether the media (cable) is the existing wiring or the new wiring. If it is new, select from the following.
- Multimode fiber OM1, OM2, OM3, OM4
- Single mode fiber G. 625
- DAC (Direct Attach Cable)/AOC (Active Optical Cable)
- Then select the connection method.
- MMF
- SMF
- DAC/AOC

Based on the above information, determine the core device.

* The necessity of physical connection between core switches depends on the consideration of applying StackWise Virtual to the core


## | Case study (core layer)

A) small-scale configuration scenario

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

Access


## Physical configuration diagram case A



* Validated with IOS-XE 16.9.3

<PI>
SNMP, Syslog, NetFlow <ISE>
Radius authentication server <NTP> NTP server
© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public



## Segment structure

| VLAN ID | Network | Purpose of use | Use color | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 31 | 10.10.31.0/24 | Management segment |  | Separated from user segment |
| 101 | 192.168.101.0/24 | User segment 1 |  | Default gateway on C9300 |
| 102 | 192.168.102.0/24 | User segment 2 |  | " |
| 103 | 192.168.103.0/24 | User segment 3 |  | " |
| 104 | 192.168.104.0/24 | User segment 4 |  | " |
| 105 | 192.168.105.0/24 | User segment 5 |  | " |
| 106 | 192.168.106.0/24 | User segment 6 |  | " |
| 107 | 192.168.107.0/24 | User segment 7 |  | " |
| 108 | 192.168.108.0/24 | User segment 8 |  | " |
| 109 | 192.168.109.0/24 | User segment 9 |  | / |
| 110 | 192.168.110.0/24 | User segment 10 |  | " |
| 200 | 192.168.200.0/30 | Core-Dist switch inter-segment |  | Routing by OSPF |
| 300 | 172.16.30.0/24 | Server segment |  | Default gateway on C9500 |

## Kit list

| Role | Device name | Device model | OS version | License |
| :--- | :--- | :--- | :--- | :--- |
| Core | C9500-1 | C9500-40X | 16.9 .3 | Network Advantage <br> Cisco DNA Advantage |
| C9500-2 | C9500-40X | 16.9 .3 | Network Advantage <br> Cisco DNA Advantage |  |
| C9300-1 | C9300-24T | 16.9 .3 | Network Advantage <br> Cisco DNA Advantage |  |
| Access | C9300-2 | C9300-24T | 16.9 .3 | Network Advantage <br> Cisco DNA Advantage |
| C9200L-1 | C9200L-48P | 16.9 .3 | Network Essentials <br> Cisco DNA Essentials |  |
| C9200L-2 | C9200L-48P | 16.9 .3 | Network Essentials <br> Cisco DNA Essentials |  |

## Connections

- 10G Ethernet (fiber optic) between cores and distributions

10G(Optic)

- 1G Ethernet (UTP) between access and distribution

1G(UTP)


## Logical configuration

- Core, distribution switch is L3
- Access switch is L2
- Configure on a VLAN basis and use SVI for L3
- The default gateway of the user terminal is on the distribution switch
- OSPF between core and distribution switches
- For management, various server segments are logically divided by VRF * However, the access switch does not support VRF.

Various servers for management tasks

## Redundant configuration

The core, distribution, and access switch are all redundant is stacks, and the links are redundant using EtherChannel.


## Main functions

- QoS
- Multicast

■ Authentication
■ Visualization
: Controls bandwidth for phone, video, critical traffic, and other traffic
: Configure multicast PIM-SM for video distribution
: Authenticate the users with 802.1X
: Setup NetFlow to visualize flow information


## Related configuration snippets

## ■QoS

!
policy-map Queueing
class VoIP
priority level 1 percent 10
class VIDEO
priority level 2 percent 20
class IMPORTANT
bandwidth remaining percent 50
class SCAVENGER
bandwidth remaining percent 5
policy-map system-cpp-policy
!
!
interface GigabitEthernet1/0/1
switchport trunk allowed vlan 31,101-110
switchport mode trunk
load-interval 30
channel-group 2 mode active
service-policy output Queueing
!

## - Multicast (PIM-SM)

## !

ip multicast-routing
ip domain name cisco.com
!
$!$
interface Vlan200
ip address 192.168.200.1 255.255.255.252
ip pim sparse-mode
ip ospf network point-to-point
ip ospf 1 area 0
!
!
ip forward-protocol nd
ip pim bsr-candidate Vlan200 0
ip pim rp-candidate Vlan200
!

## Related configuration snippets

## Authentication (802.1X)

aaa new-model
!
aaa authentication dot1x default group radius
aaa authorization network default group radius
aaa accounting dot1x default start-stop group radius
!
aaa server radius dynamic-author
client 10.10.30.177 server-key cisco
auth-type all
!
radius server ISE
address ipv4 10.10.30.177 auth-port 1812 acct-port 1813
key cisco
!
interface GigabitEthernet1/0/1
switchport mode access
device-tracking
authentication host-mode multi-auth
authentication order dot1x mab
authentication port-control auto
authentication periodic
mab
dot1x pae authenticator
spanning-tree portfast

■Visualisation (NetFlow)

| ! | ! |
| :--- | :--- |
| flow record FLOW_RECORD | interface GigabitEthernet2/0/47 |
| match ipv4 version | switchport trunk allowed vlan 31,101-110 |
| match ipv4 protocol | switchport mode trunk |
| match ipv4 source address | ip flow monitor IPv4_NETFLOW input |
| match ipv4 destination address | ip flow monitor IPv4_NETFLOW output |
| match transport source-port | load-interval 30 |
| match transport destination-port | macsec network-link |
| collect counter bytes long | mka policy macsectest |
| collect counter packets long | mka pre-shared-key key-chain macsectest |
| collect timestamp absolute first | channel-group 1 mode active |
| collect timestamp absolute last | service-policy output Queueing |
| ! | ! |
| ! |  |
| flow exporter NETFLOW_TO_PI |  |
| description Export Netlfow to PI |  |
| destination 10.10.30.195 |  |
| source Loopback0 |  |
| transport udp 9991 |  |
| $!$ |  |
| ! |  |
| flow monitor IPv4_NETFLOW |  |
| exporter NETFLOW_TO_PI |  |
| cache timeout active 60 |  |
| record FLOW_RECORD |  |

## Failure test configuration

< Verification point >
(1)(2)(3) The location is assumed to be a failure of the device power supply (4) 5)(6)(7) Assuming a link cable failure


C9200L-1
(C9200L-48T)


Gi1/0/13

## Failure test results - experimental, not a reference

| Failure pattern | Downlink |  | Uplink |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Disconnect (millisecond) | Switch back (millisecond) | Disconnect (millisecond) | Switch back (millisecond) |  |
| (1) C9500-1 Power failure | 26 | 9 | 29 | 7 |  |
| (2) C9300-1 Power failure | 67 | 18 | 69 | 20 |  |
| (3) C9200-1 Power failure | 1680 | 20 | 1557 | 9 |  |
| (4) C9500-1 Link failure Te1/0/1 | 4 | 4 | 93 | 4 |  |
| (5) C9500-1 Link failure Te1/0/2 | 4 | 3 | 127 | 20 |  |
| (6) C9300-1 Link failure Gi1/0/1 | 0 | 3 | 76 | 24 |  |
| (7) C9300-1 Link failure Gi1/0/2 | 0 | 1 | 44 | 26 |  |

## Configuration samples - for lab usage only

It is the samples of configs for each device used in the verification. Click the icon to display the settings.

## Switch model

Sample configuration file

Catalyst 9500

Catalyst 9300

Catalyst 9200

## $.1|1.1| 1$. CISCO

Thank you! www.cisco.com/go/cvd


[^0]:    © 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

[^1]:    © 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

[^2]:    © 2021 cisco and/or its affiliates. All rights reserved. Cisco Public

