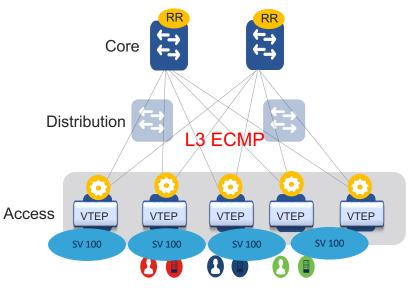

Сетевой марафон Cisco:Классика LAN День 5. Сетевые фабрики «сделай сам»: VXLAN EVPN

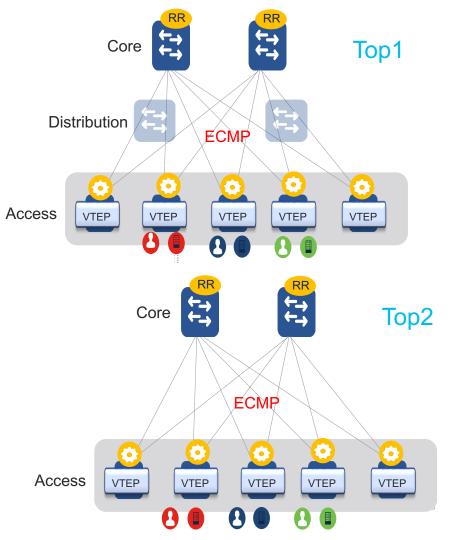
Михаил Окунев Системный Архитектор 26 марта 2021

Agenda

- Introduction to Campus Fabrics
- VXLAN with BGP EVPN
 - Overview
 - Underlay
 - Control & Data Plane
 - Multi-Tenancy
 - StackWise Virtual Redundancy
 - Tenant Routed Multicast (TRM)
 - External Connectivity Options
 - Services
- Underlay Designs and Configurations


Typical Campus Network Challenges

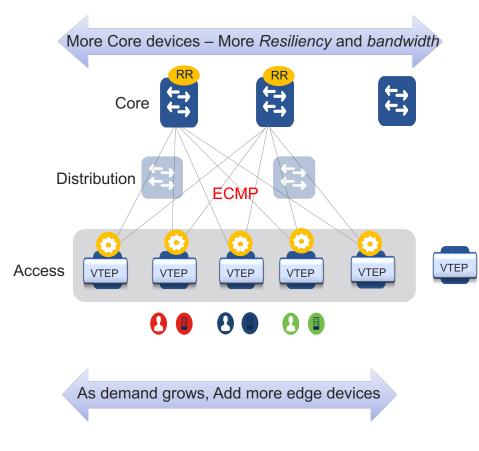
Why EVPN?


- •Any subnet, anywhere, rapidly
- •Layer 3 ECMP Links End-End
- •No Flooding with BGP Control Plane
- •Extensible Scale & Resiliency
- •Distributed Gateway on all End Point Switches

No Spanning-Tree/Broadcast Domain

Flexible Topologies

- High Bi-Sectional Bandwidth
- Wide ECMP: Unicast or Multicast
- Uniform Reachability, Deterministic Latency
- High Redundancy: Node/Link Failure
- •Line rate, low latency, for all traffic



Fabric Scalability

- Fabric size: Hundreds to 10s of Thousands of 1/10G ports
- Variety of Building Blocks:
 Varying Size
 Varying Capacity
 Desired oversubscription
 Modular and Fixed

•Scale Out Architecture

 Add Edge and core devices, external connectivity as the demand grows

VXLAN with BGP EVPN: Overview

Understanding Overlay Technologies

Overlay Services •Layer 2 •Layer 3 •Layer 2 and Layer 3	Tunnel Encapsulation		Underlay Transport Network
Control Plane •Peer Discovery mechanism •Route Learning and Distribution –Local Learning –Remote Learning		 Data Plane Overlay Layer 2/Layer 3 Unicast traffic Overlay Broadcast, Unknown Unicast, Multicast traffic (BUM traffic) forwarding –Multicast 	

Why VXLAN?

VXLAN provides a Network with Segmentation, IP Mobility, and Scale

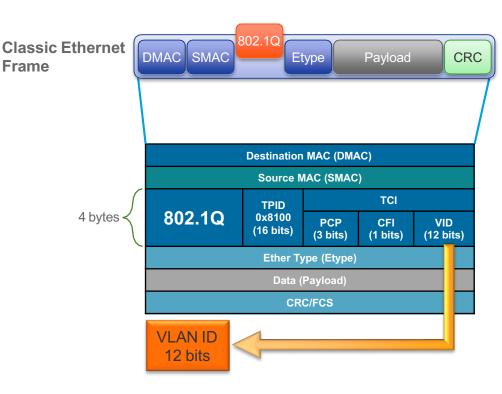
•"Standards" based Overlay (RFC 7348)

•Leverages Layer-3 ECMP – all links forwarding

Increased Name-Space to 16M identifier

Integration of Physical and Virtual

∙lt's SDN ☺

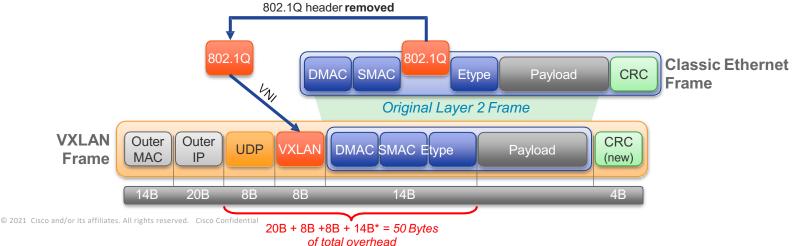


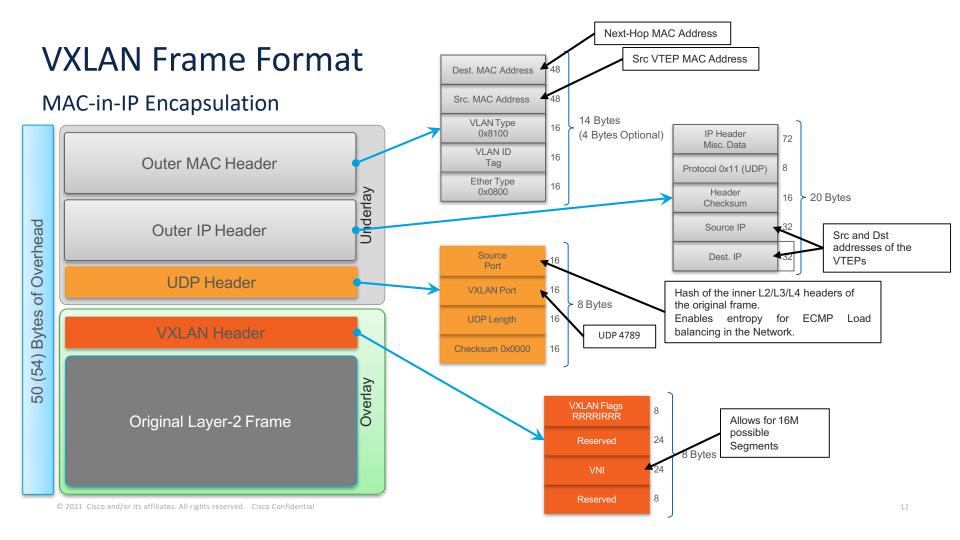
Overview

Classic Ethernet IEEE 802.1Q Frame Format

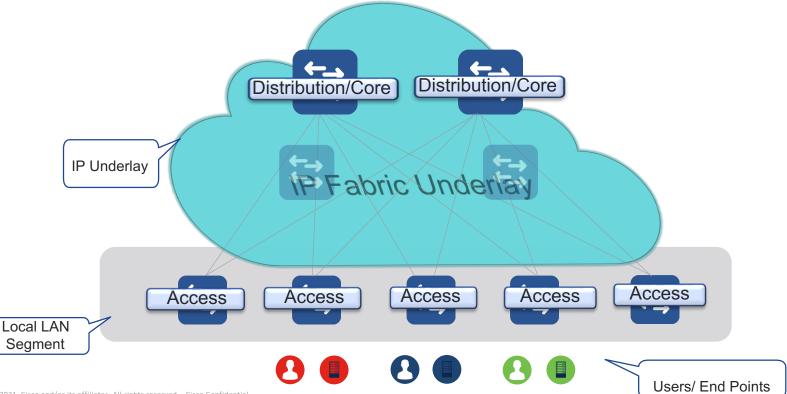
- •Traditionally VLAN is expressed over 12 bits (802.1Q tag)
 - Limits the maximum number of segments in a Campus to 4096 VLANs

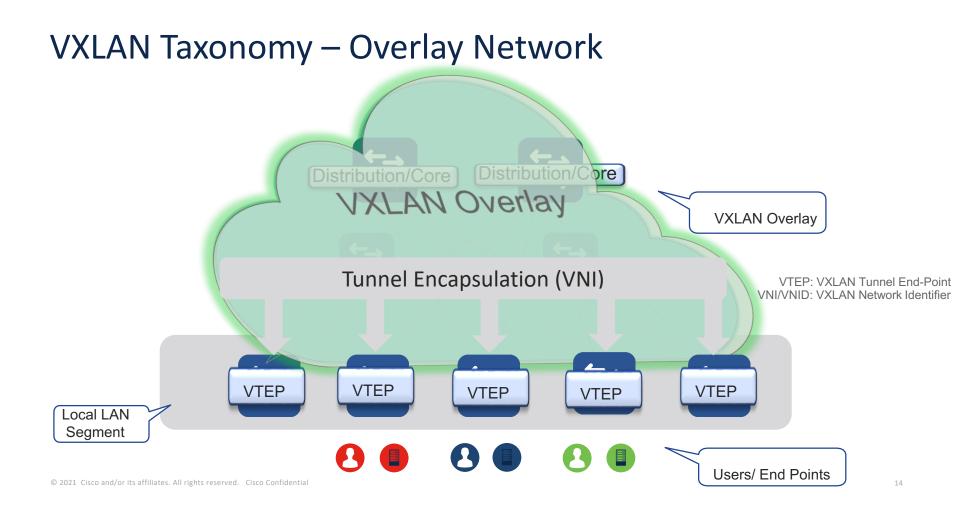
TPID = Tag Protocol Identifier, TCI = Tag Control Information, PCP = Priority Code Point, CFI = Canonical Format Indicator, VID = VLAN Identifier



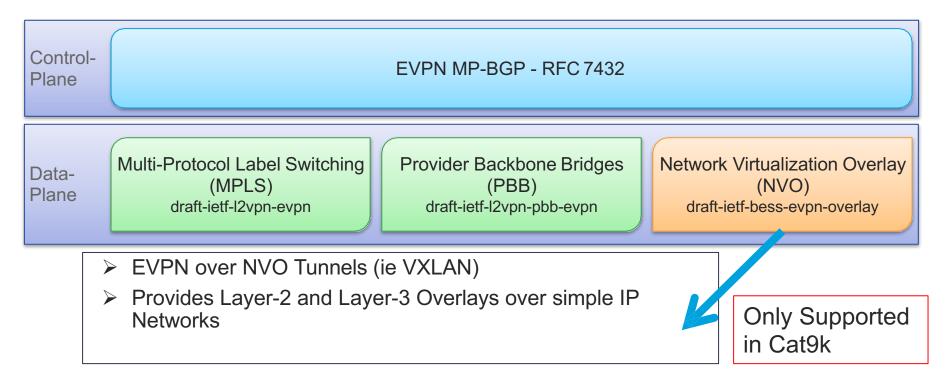

Overview

Introducing VXLAN


- Traditionally VLAN is expressed over 12 bits (802.1Q tag)
 - Limits the maximum number of segments in a Campus to 4096 VLANs


- VXLAN leverages the VNI field with a total address space of 24 bits
 Support of ~16M segments
- The VXLAN Network Identifier (VNI/VNID) is part of the VXLAN Header

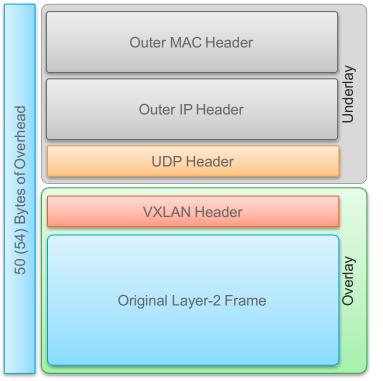
VXLAN Taxonomy – Underlay Network



What is VXLAN with BGP EVPN?

Standards based Overlay (VXLAN) with Standards based Control-Plane (BGP)
Layer-2 MAC and Layer-3 IP information distribution by Control-Plane (BGP)
Forwarding decision based on Control-Plane (minimizes flooding)
Integrated Routing/Bridging (IRB) for Optimized Forwarding in the Overlay
Multi-Tenancy At Scale

EVPN – Ethernet VPN

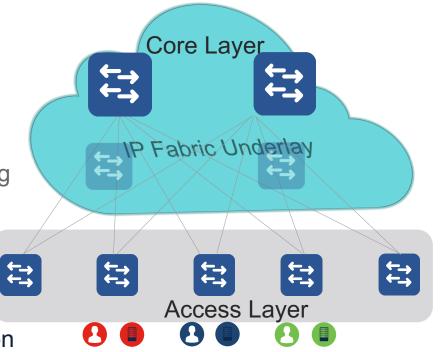


Cisco's VXLAN related IETF RFCs & Drafts

ID	Title	Category
RFC 7348	Virtual eXtensible Local Area Network	Data Plane
RFC 7432	BGP MPLS based Ethernet VPNs	Control Plane
draft-ietf-bess-evpn-overlay	A Network Virtualization Overlay Solution using EVPN	Control Plane
draft-ietf-bess-evpn-inter-subnet-forwarding	Integrated Routing and Bridging in EVPN	Control Plane
draft-ietf-bess-l2vpn-evpn-prefix- advertisement	IP Prefix Advertisement in E-VPN	Control Plane
draft-tissa-nvo3-oam-fm	NVO3 Fault Management / OAM	Management Plane

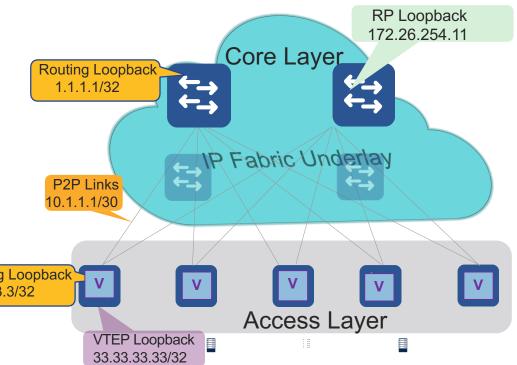
VXLAN with BGP EVPN: Underlay

MTU and VXLAN



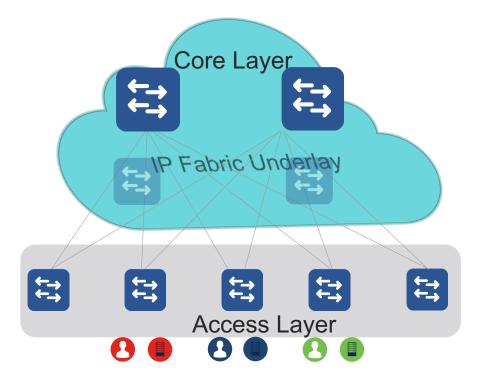
- VXLAN adds 50 Bytes (or 54 Bytes) to the Original Ethernet Frame
- Avoid Fragmentation by adjusting the IP Networks MTU
- Using a MTU of 9216* Bytes accommodates VXLAN Overhead plus other application MTU

*Cisco Catalyst 9k switches only support 9198 Byte for Layer-3 Traffic

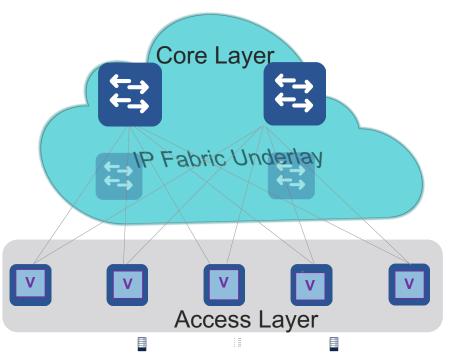

Deployment Considerations

- MTU and Overlays
 - Only 9198 Bytes supported on Cat 9k
- Unicast Routing Protocol and IP Addressing
 - ISIS, OSPF and BGP
- Multicast for BUM* Traffic Replication
 - PIM ASM only supported for BUM
- BUM Traffic Handling by Ingress Replication

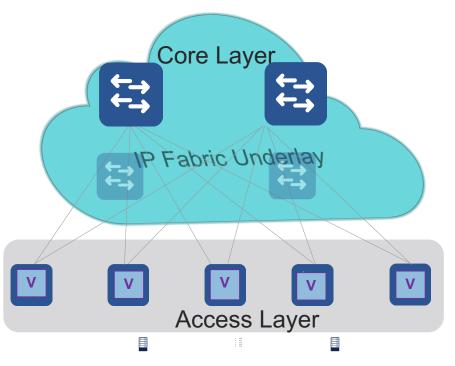
Building your IP Network – Interface Principles


 Know your IP addressing and IP scale requirements **Routing Loopback** 1.1.1/32 Separate VTEP from Routing Protocol from RP* Loopback Best to use individual Aggregates P2P Links for the Underlay 10.1.1.1/30 Unicast Routing p2p** Links Unicast Routing Loopbacks •VTEP (NVE) Loopback Routing Loopback Multicast Routing Loopback (RP) 3.3.3/32 •IPv4 only (today)

Building your IP Network


Routed Ports/SVI's

- Layer-3 Interfaces between Access and Core (no switchport) Or SVI's
 For each Point-2-Point (P2P) connection, minimum /31 required
 Alternative, use IP Unnumbered (/32)
- Use Loopback as Source-Interface for VTEP (NVE*)

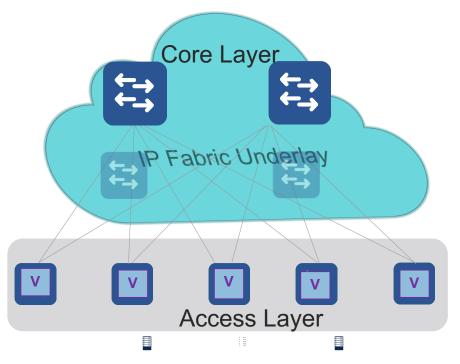

Building your IP Network – Routing Protocols; OSPF

•OSPF – watch your Network type!
•Network Type Point-2-Point (P2P)
•Preferred (only LSA type-1)
•No DR/BDR election
•Suits well for routed interfaces/ports (optimal from a LSA Database perspective)
•Full SPF calculation on Link Change

Building your IP Network – Routing Protocols; IS-IS

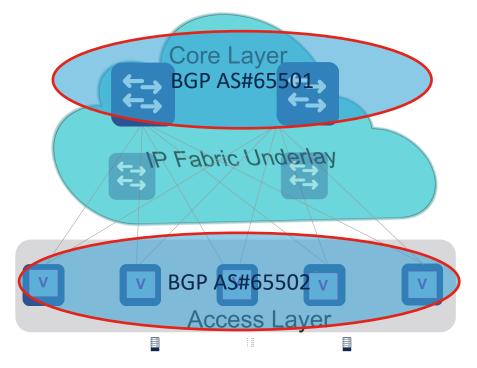
IS-IS – what was this CLNS?
Independent of IP (CLNS)
Well suited for routed interfaces/ports
No SPF calculation on Link change; only if Topology changes
Fast Re-convergence
Not everyone is familiar with it

Building your IP Network – Routing Protocols; eBGP


•eBGP – Service Provider style

•Two Different Models

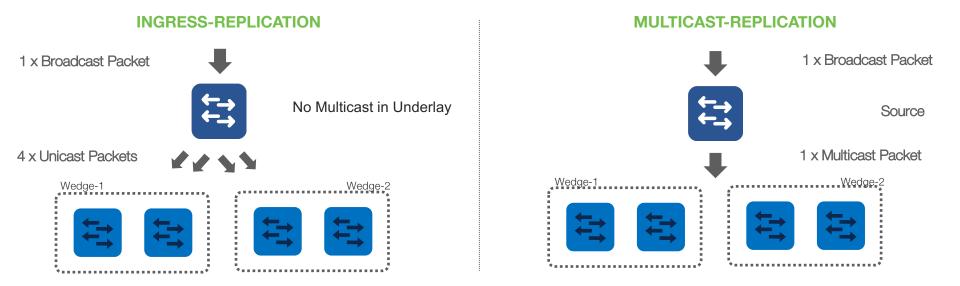
•Two-AS


•Multi-AS

- •BGP is a Distance Vector Protocol (well, actually Path Vector)
 - AS* are used to calculate the Path (AS_Path)
- If Underlay is eBGP, your Overlay becomes eBGP

Building your IP Network – Routing Protocols; eBGP

- eBGP TWO-AS, yes it works!
 - eBGP peering for Underlay-Routing based on physical interface
 2 Cores = 2 BGP Peering per Edge
 Advertise all Infrastructure Loopbacks
 - eBGP peering for Overlay-Routing (EVPN)
 - Loopback to Loopback Peering
 2 Cores = 2 BGP Peering
 - •Requires some BGP config knobs •Disable BGP AS-Path check •Next-Hop needs to be Unchanged •Retain all Routes on Core (not a RR)



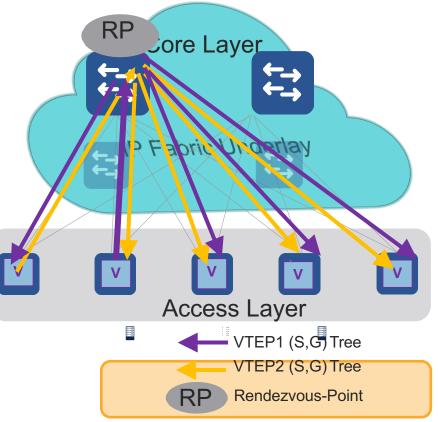
Building your IP Network – Routing Protocols; eBGP

- eBGP Multi-AS
 - Total of 4 eBGP Peering (with 2 Cores)
 - eBGP peering for Underlay-Routing based on physical interface
 2 Cores = 2 BGP Peering per Edge
 Advertise all Infrastructure Loopbacks
 - eBGP peering for Overlay-Routing (EVPN)
 - Loopback to Loopback Peering
 - •2 Cores = 2 BGP Peering
- •Requires some BGP config knobs •Next-Hop needs to be Unchanged •Retain all Routes on Core (not a RR)

VxLAN BUM Replication Options

- 2 mechanics to handle Broadcast, Unknown Unicast and Link-Local Multicast (BUM):
 - o Ingress-Replication Convert each BUM packet to multiple Unicast packets and transmit to each remote VTEP
 - o Multicast-Replication Convert each BUM packet to single Multicast packets and transmit in Underlay network
- Multicast replication offers significant system, network and end-user level performance benefits

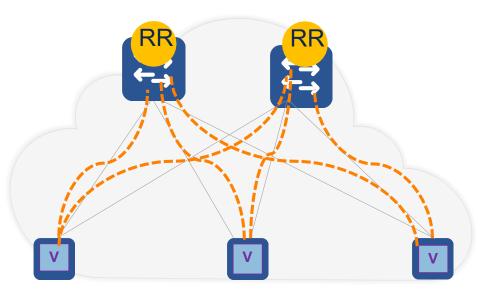
Multicast Enabled Underlay for BUM


Only PIM ASM is supported on Catalyst 9k

- Multi-Destination Traffic (Broadcast, Unknown Unicast, etc.) needs to be replicated to ALL VTEPs serving a given VNI
 Each VTEP is Multicast Source & Receiver
- •For a given VNI, all VTEPs act as a Sender and a Receiver
- Aggregation Switches make good Rendezvous-Point (RP) Locations in Topologies
- Reserve a range of Multicast Groups (Destination Groups/DGroups) to service the Overlay and optimize for diverse VNIs

Multicast Enabled Underlay – PIM ASM

•PIM Sparse-Mode (ASM)


- Redundant Rendezvous-Point using PIM Anycast-RP or External RP
- Source-Tree or Unidirectional Shared-Tree (Source-Tree shown)
 - Shared-Tree will always use RP for forwarding
- 1 Source-Tree per Multicast-Group per VTEP (each VTEP is Source & Receiver)

VXLAN with BGP EVPN: Control & Data Plane

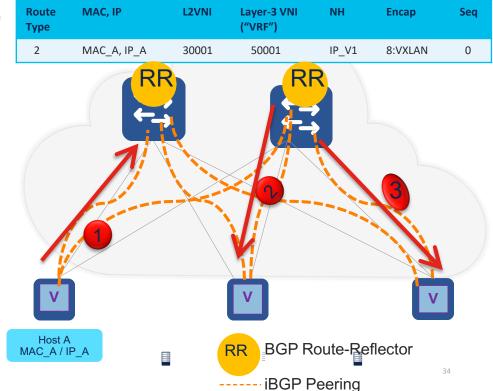
Multiprotocol BGP (MP-BGP) Primer

- Multiprotocol BGP (MP-BGP)
- Extension to Border Gateway Protocol (BGP) - RFC 4760
- •VPN Address-Family:
 - Allows different types of address families (e.g. VPNv4, VPNv6, L2VPN EVPN, MVPN)
 - Information transported across single BGP peering

MP-BGP EVPN Route Type(s)

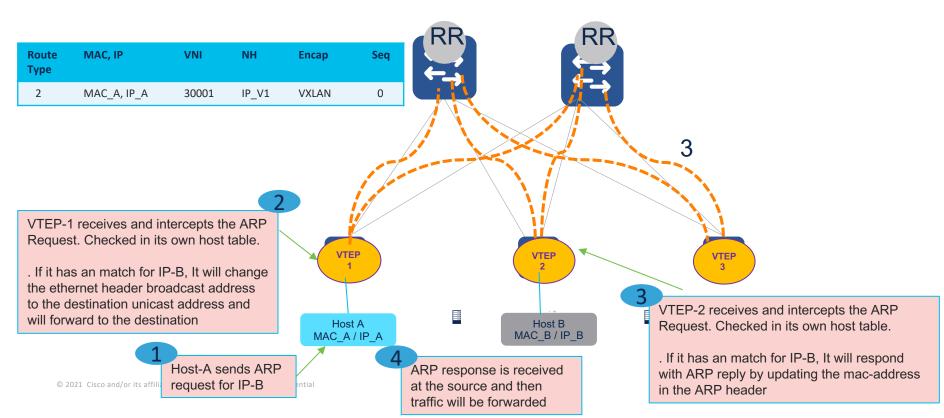
- New BGP EVPN NLRI format is defined in RFC <u>7432</u>
- The Route Type field defines the encoding of the rest of the EVPN NLRI (Route Type specific EVPN NLRI).
 Route TYPE – 1 byte
- RFC 7432 defines 4 different route types:
 - Route Type 1 Ethernet Auto-Discovery (A-D) route
 - Route Type 2 MAC/IP advertisement route
 - Route Type 3 Inclusive Multicast Route → EVPN Ingress Replication (IR) (unicast mode for BUM)
 - Route Type 4 Ethernet Segment Route
- Draft <u>https://tools.ietf.org/html/draft-ietf-bess-evpn-prefix-advertisement-09</u> defines: Route Type 5 -IP Prefix Route → Layer-3 VNI Route
- Route-type 2 or MAC/IP Advertisement route is for host MAC or MAC-IP
- Route-type 5 or IP Prefix route will be used for the advertisement of IP prefixes only

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

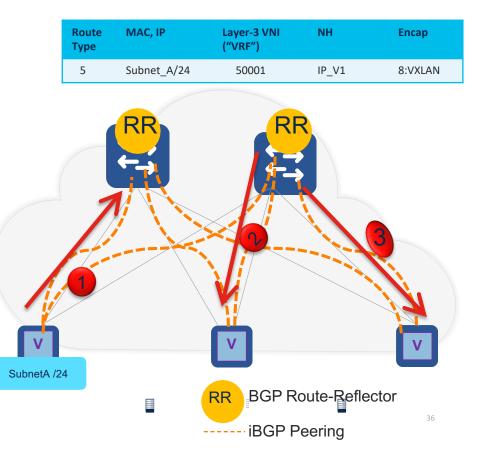

NLRI = Network Layer Reachability Information

EVPN NLRI

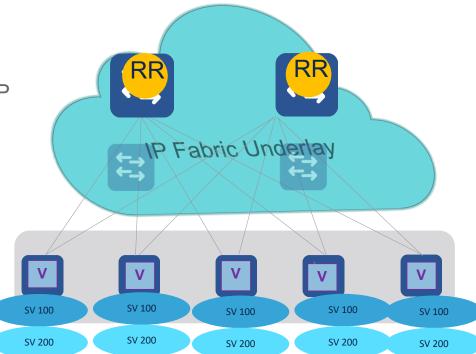
Length – 1 byte Route Type Specific (variable)


MAC/IP Advertisement route "MAC or MAC/IP host Advertisement (Route-Type 2)"

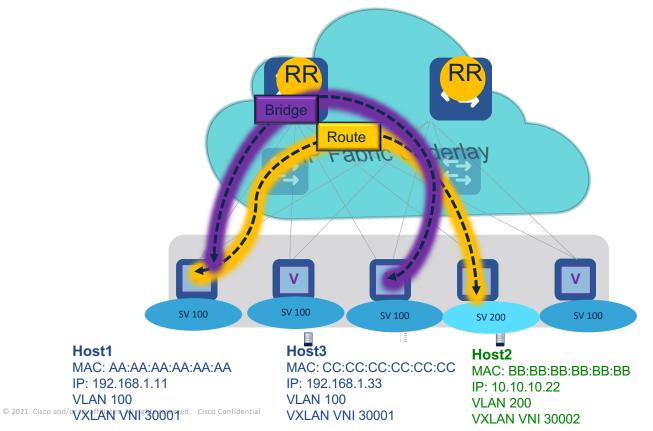
- Host "A" attaches to Edge Device (VTEP)
- VTEP V1 advertises Host "A" reachability information
 - MAC and L2VNI [mandatory]
 - IP and L3VNI [optional]
 - depending on ARP
- Additional Attributes advertised
 - MPLS Label 1 (Layer-2 VNI)
 - MPLS Label 2 (Layer-3 VNI)
 - Extended Communities


EVPN Control Plane --- ARP Suppression

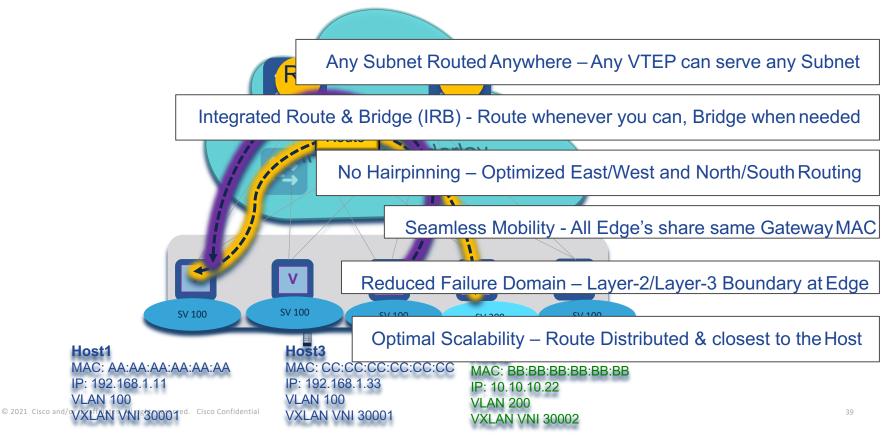
Minimize Flood-&-learn behavior for host learning via ARP/ND Relay


Protocol Learning & Distribution "Subnet Route Advertisement (Route-Type 5)"

- IP Prefix Redistribution
 - From "Direct" (connected), Static or dynamically learned Routes
- VTEP V1 advertises local Subnet through redistribution of "Direct" (connected) routes
 - IP Prefix, IP Prefix Length, and Layer-3 VNI
- Additional route attributes advertised
 - MPLS Label (Layer-3 VNI)
 - Extended Communities
- Multiple VTEPs can announce same IP Prefix


Distributed IP Anycast Gateway

- Distributed Inter-VXLAN Routing at Access Layer (Edge)
 - All edge switches share same gateway IP and MAC Address for a given Subnet
- Gateway is always active
 - no redundancy protocol, hello exchange etc.
- Distributed state Smaller ARP Tables



SVI 100, Gateway IP: 192.168.1.1, Gateway MAC: AG:AG:AG:AG:AG:AG SVI 200, Gateway IP: 10.10.10.1, Gateway MAC: AG:AG:AG:AG:AG:AG

Distributed IP Anycast Gateway

Distributed IP Anycast Gateway

Integrated Routing and Bridging (IRB)

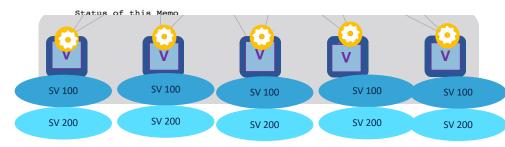
VXLAN/EVPN based overlays follow two slightly different Integrated Routing and Bridging (IRB) semantics

Asymmetric

 Uses an "asymmetric path" from the Host towards the egressing port of the VTEP vs. the way back

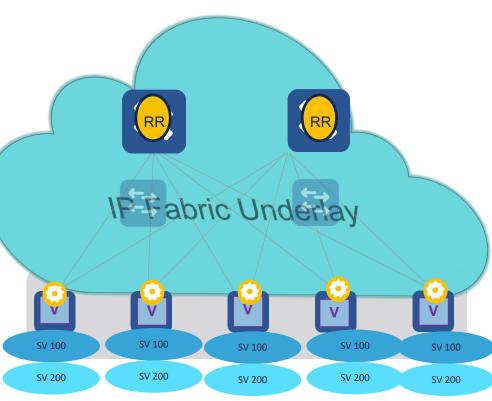
Symmetric*

 Uses an "symmetric path" from the Host towards the egressing port of the VTEP vs. the way back


*Implemented by Cisco's VXLAN/EVPN

Integrated Routing and Bridging in EVPN draft-ietf-bess-evpn-inter-subnet-forwarding-00

Abstract

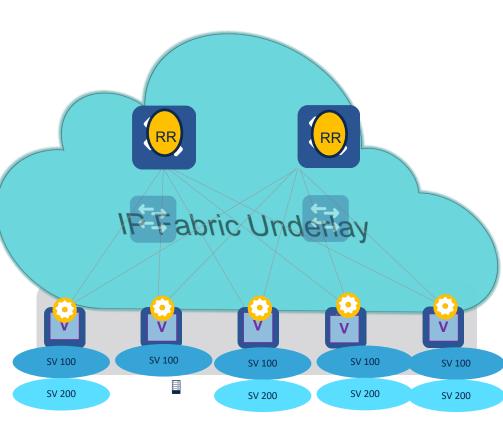

EVPN provides an extensible and flexible multi-homing VPN solution for intra-subnet connectivity among hosts/VMs over an MPLS/IP network. However, there are scenarios in which inter-subnet forwarding among hosts/VMs across different IP subnets is required, while maintaining the multi-homing capabilities of EVPN. This document describes an Integrated Routing and Bridging (IRB) solution based on EVPN to address such requirements.

Consistent Configuration

- Logical Configuration (VLAN, VRF, VNI) consistently instantiated on ALL edge's
- Optimal for Consistency
 Every VLAN/VNI Everywhere

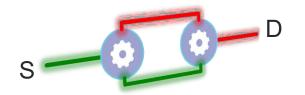
•Sub-Optimal for Scale •Instantiates Resources (VLAN/VNI) even if no End-Point uses it

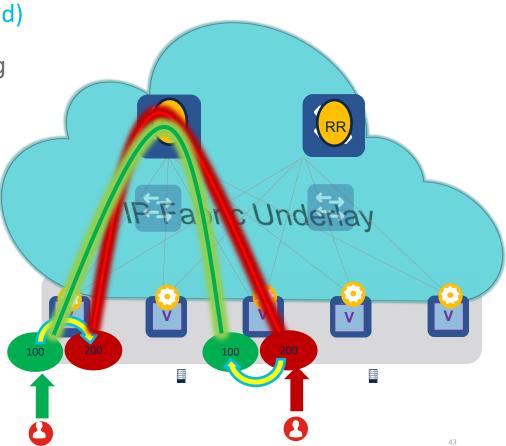
Scoped Configuration


 Logical Configuration (VLAN, VRF, VNI) scoped to edge's with respective connected End-Points

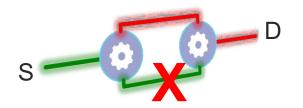
•Optimal for Scale

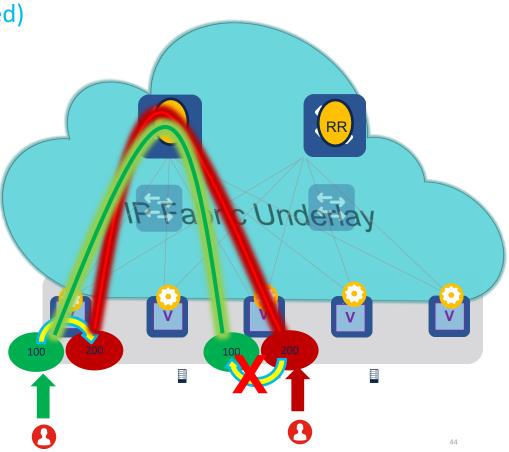
 Instantiates Resources (VLAN/VNI) where End-Points are connected


Consistency with End-Points

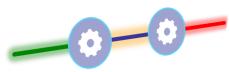

•Configuration Consistency depends on End-Points

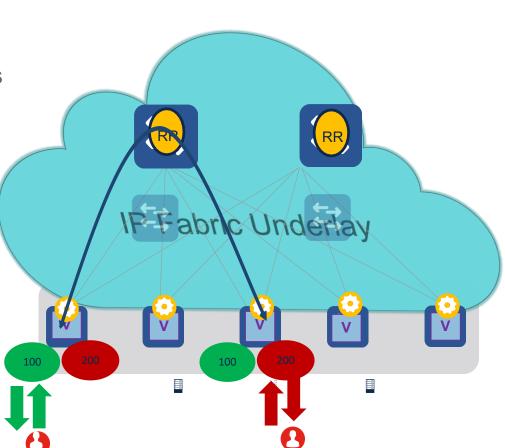
Asymmetric IRB (Not Supported)


- Similar to todays Inter-VLAN routing •
- Requires to follow a consistent • configuration of VLAN and L2VNI across all Switches
- Post routed traffic will leverage • destination Layer 2 Segment (L2VNI), same as for bridged traffic

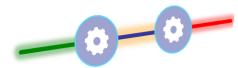


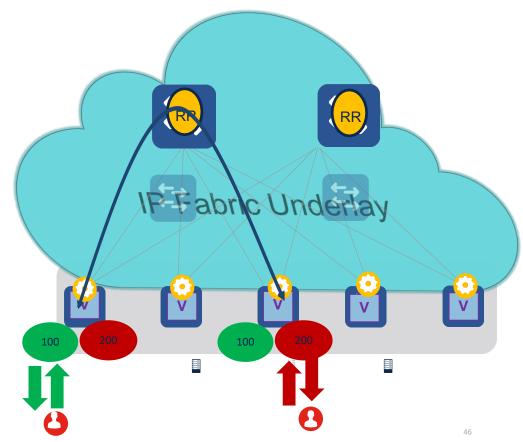
Asymmetric IRB (Not Supported)


 What if you don't have consistent configuration across all the VTEPs?



Symmetric IRB


- Similar to Transit Routing Segments
- Scoped Configuration of VLAN/L2VNI; only required where End-Points (Server) reside
- New VNI (L3VNI) introduced per virtual routing and forwarding (VRF) context
- Routed traffic uses transit VNI (L3VNI), while bridged traffic uses L2VNI



Symmetric IRB

- What if you don't have consistent configuration across all the VTEPs?
- No Changes, since we use dedicated L3 VNI for Routed Traffic

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

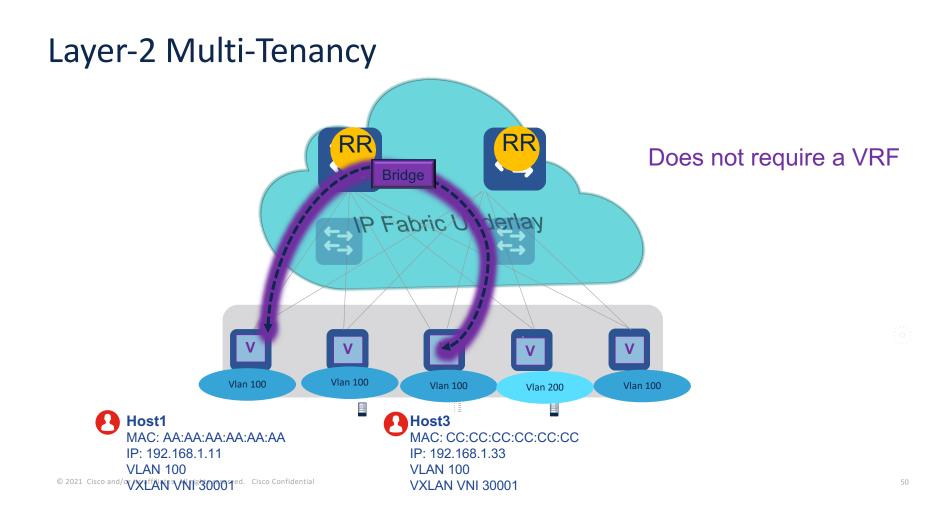
VXLAN with BGP EVPN: Multi-Tenancy

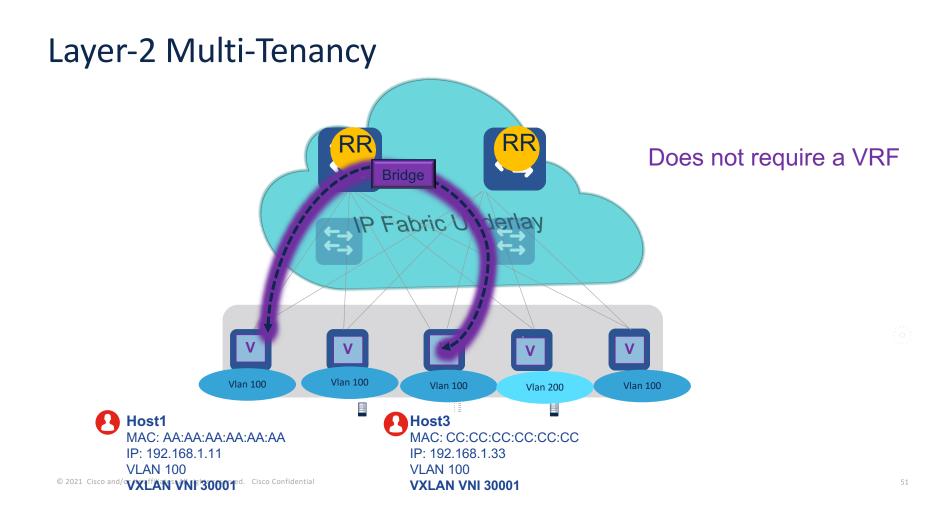
What is Multi-Tenancy

- A mode of operation, where multiple independent instances (tenant) operate in a shared environment.
- Each instance (i.e. VRF/VLAN) is logically isolated, but physically integrated.

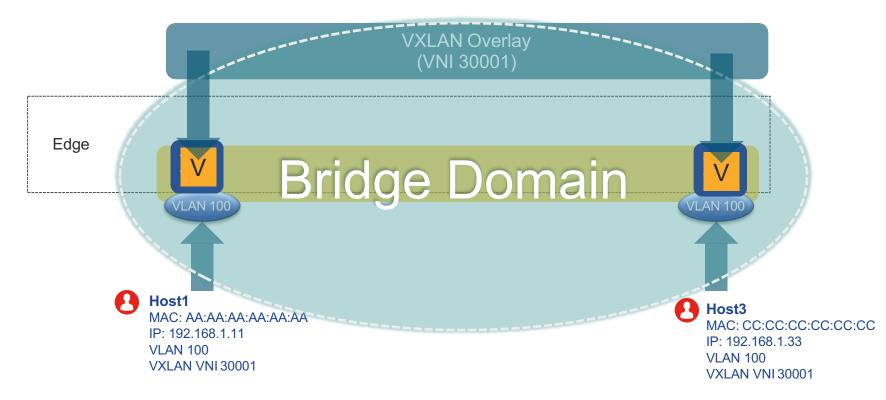
Where can we apply Multi-Tenancy

Multi-Tenancy at Layer-2

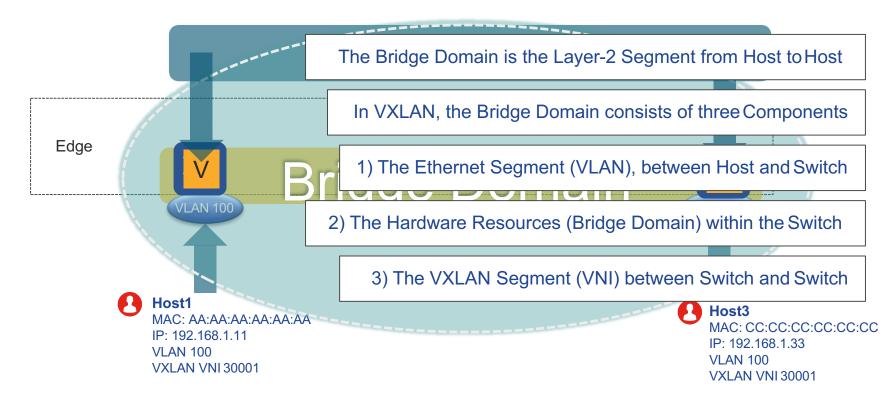

Per-Switch VLAN-to-VNI mapping

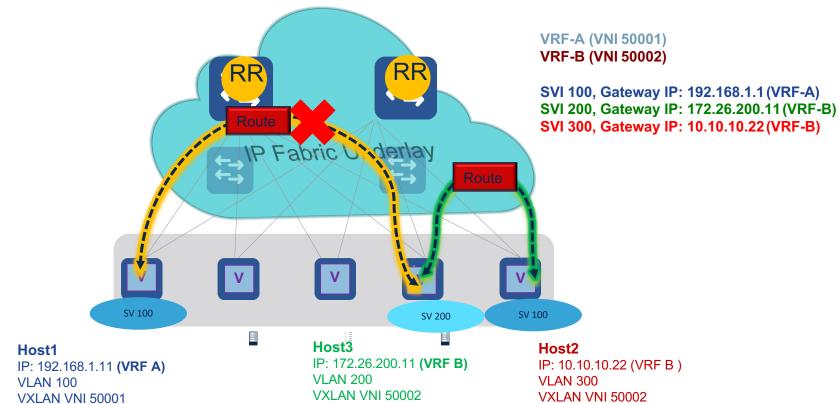

•Per-Port VLAN Significance

Multi-Tenancy at Layer-3


VRF-to-VNI mapping

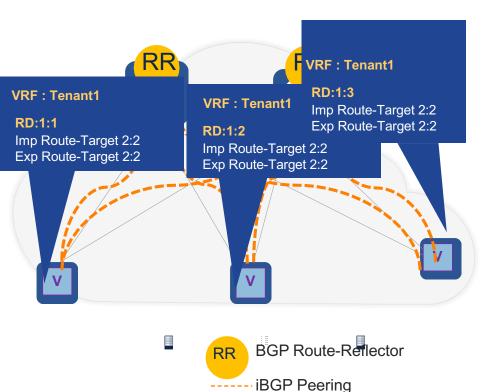
•MP-BGP for scaling with VPNs




Layer-2 Multi-Tenancy – Bridge Domains

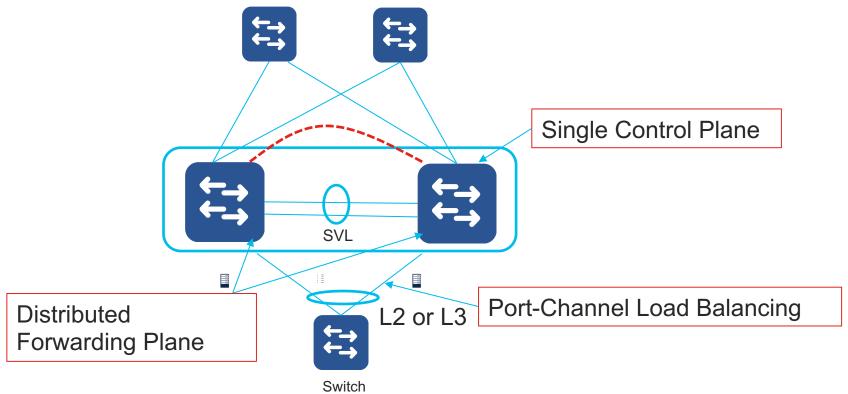
Layer-2 Multi-Tenancy – Bridge Domains

Layer-3 Multi-Tenancy



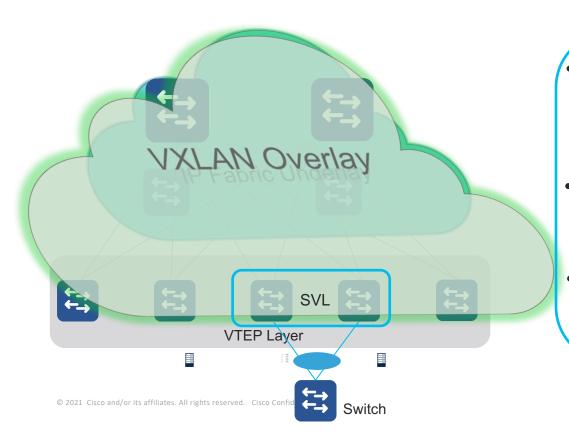
© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Multiprotocol BGP (MP-BGP) Primer


- VPN segmentation for tenant routing (Multi-Tenancy)
 Route Distinguisher (RD)
 8-byte field of VRF parameters
 value to make VPN prefix unique:

 RD + VPN prefix
- •Selective distribute VPN routes -Route Target (RT)
 - 8-byte field of VRF parameter
 - unique value to define the import/export rules for VPN prefix

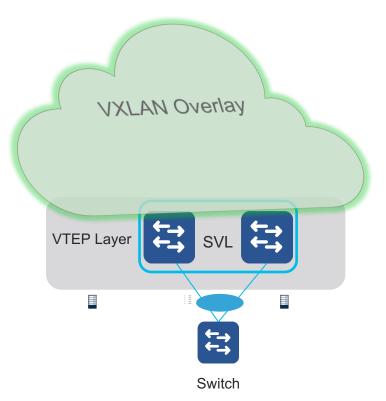
VXLAN with BGP EVPN: StackWise Virtual Redundancy


Multi-Homing Support via StackWise Virtual

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

No additional configuration required for VTEP Role

StackWise Virtual Gateway Redundancy

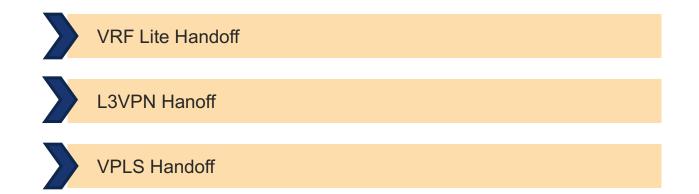


- StackWise Virtual
 - Multi-Chassis Link Aggregation
 - Extended for VXLAN

Access/Host Side

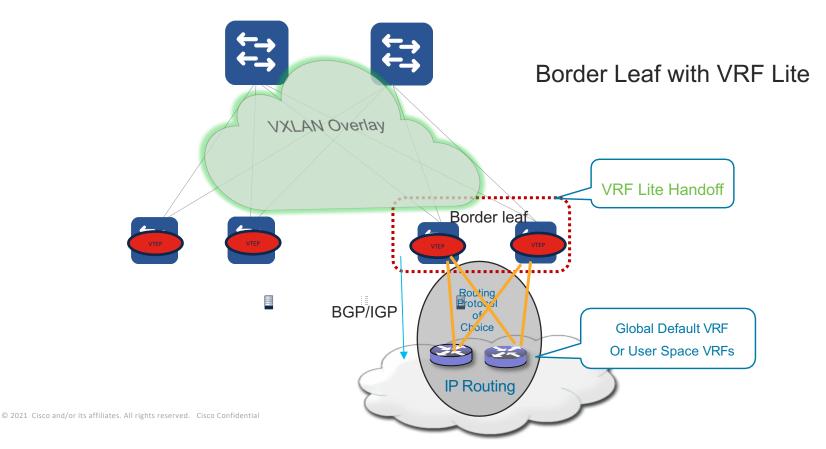
- Dual-Connect Access or Hosts
- Using Port-channels
- Fabric Side
 - Seen as one VTEP from remote nodes

StackWise Virtual Gateway Redundancy

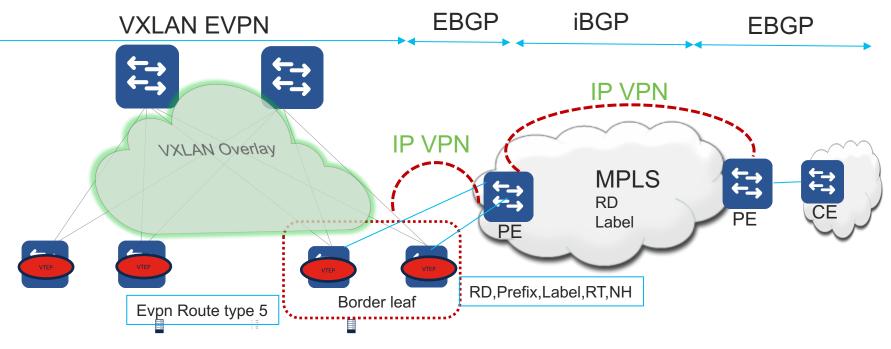


Independent Device in the EVPN Control-Plane

- Single Protocol Peering
- Single Route Distinguisher(RD)
- Single VXLAN Device
 - No special configuration needed
 - Underlay Port-channel Load Sharing
 to SVL VTEP

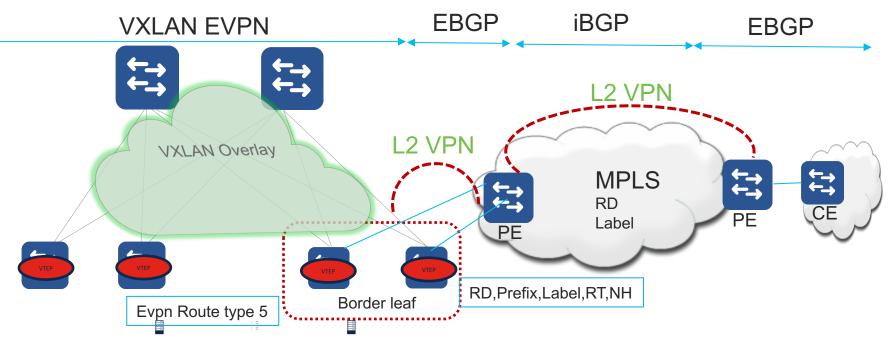

External Connectivity Options

Border Leaf Deployment Options



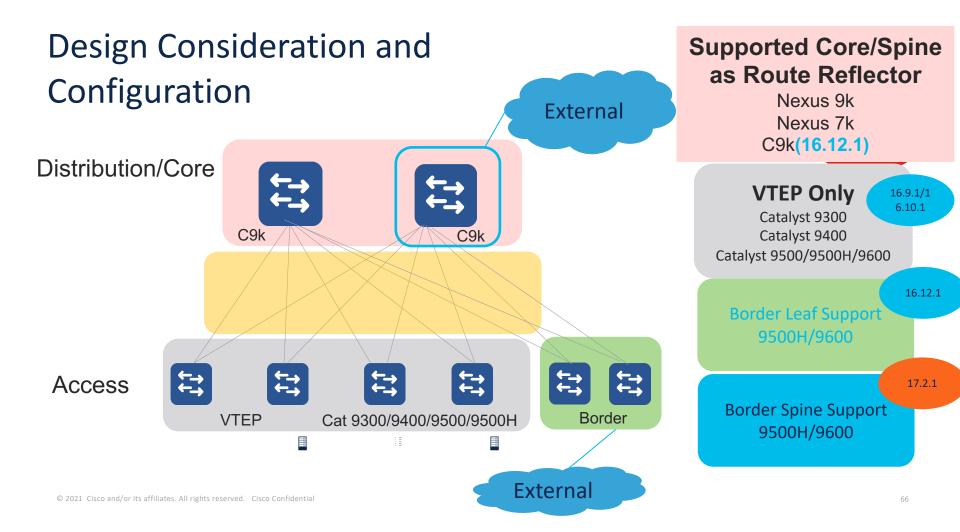
Border Functionality is supported with Edge/Leaf Switches and also with Spine

EVPN VXLAN Fabric External Routing


EVPN VXLAN Fabric <> L3VPN Handoff

Single Box Solution – Border Leaf interconnecting EVPN with MPLS L3VPN

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia


EVPN VXLAN Fabric <> L2VPN Handoff

Single Box Solution – Border Leaf interconnecting EVPN with VPLS

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Confidentia

Underlay Designs and Configurations

Platforms supported and Scale

- Platforms supported include Catalyst 9300/9400/9500 in 16.9.1
- Catalyst 9500-H is supported from 16.10.1
- Targeted Scale is listed in Table below:

Feature	Scale
Number of VTEPs	200 (Tested #)
Number of L2 + L3 VNI	225
Number of Access SVIs/Vlans	225
Number of TOTAL MAC and IPv4 host routes per VTEP (local + remote)	32k/64k (subject to platform limitation and sdm template, use "show sdm prefer" command to identify Cat9300/9400/9500/9500H/9600 limit)

Underlay Configuration with OSPF

Distribution/Core

Access Layer – Switch1

interface Loopback0 ip address 3.3.3.3 255.255.255.255 ip pim sparse-mode ip ospf 1 area 0

router ospf 1 router-id 3.3.3.3

interface TenGigabitEthernet1/1/1 Sw1 description To Core1 no switchport ip address 10.10.1.2 255.255.255.0 ip pim sparse-mode ip ospf 1 area 0 Ip ospf network point-to-point

Core – Switch1 interface loopback0 ip address 4.4.4/32 ip router ospf 1 area 0.0.0.0 ip pim sparse-mode

router ospf 1 router-id 4.4.4.4

interface Ethernet1/1 ip address 10.10.1.1/24 ip router ospf 1 area 0.0.0.0 Ip ospf network point-to-point ip pim sparse-mode

Cat 9200/94

68

Underlay Configuration for BUM – PIM ASM

Distribution/Core

Access Layer – Switch1

interface Loopback0 ip pim sparse-mode

interface TenGigabitEthernet1/1/1 description To Core1 ip pim sparse-mode N7/9k

RP

Cat

Core – Switch1 interface loopback0 ip pim sparse-mode

interface Ethernet1/1 ip pim sparse-mode

interface loopback1---- Anycast RP (Seperate Loopback) ip address 4.5.4.5/32 ip router ospf 1 area 0.0.0.0 ip pim sparse-mode

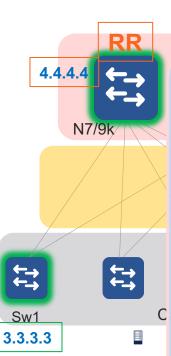
ip pim rp-address 4.5.4.5 group-list 224.0.0.0/4 ip pim ssm range 232.0.0.0/8

ip pim rp-address 4.5.4.5

Overlay Configuration- iBGP Control Plane

Access Layer – Switch1

router bgp 1 bgp router-id 3.3.3.3 bgp log-neighbor-changes neighbor 4.4.4.4 remote-as 1 neighbor 4.4.4.4 update-source Loopback0


address-family ipv4 redistribute connected neighbor 4.4.4.4 activate exit-address-family

address-family l2vpn evpn

neighbor 4.4.4.4 activate neighbor 4.4.4.4 send-community both neighbor 4.4.4.4 soft-reconfiguration inbound exit-address-family

address-family ipv4 vrf tenant1 advertise l2vpn evpn

redistribute connected exit-address-family

Core – Switch1

router bgp 1 bgp log-neighbor-changes neighbor 3.3.3.3 remote-as 1 neighbor 3.3.3.3 update-source Loopback0 neighbor 4.4.4.4 remote-as 1 neighbor 4.4.4.4 update-source Loopback0

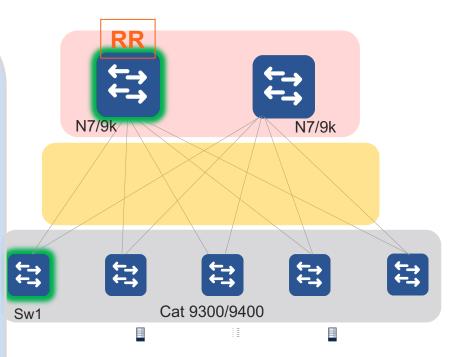
address-family ipv4

redistribute connected neighbor 3.3.3.3 activate neighbor 4.4.4.4 activate exit-address-family

address-family l2vpn evpn

neighbor 3.3.3.3 activate neighbor 3.3.3.3 send-community both **neighbor 3.3.3.3 route-reflector-client** neighbor 4.4.4.4 activate neighbor 4.4.4.4 send-community both **neighbor 4.4.4 route-reflector-client** maximum-paths 2 exit-address-family

EVPN – Multitenancy Configuration


Access Layer – Switch1

vrf definition tenant1
rd 1:1 - This should be unique per VTEP/vrf
!
address-family ipv4
route-target export 2:2 stitching

route-target import 2:2 stitching exit-address-family

Access Layer – Switch2

vrf definition tenant1 rd 2:2 ! address-family ipv4 route-target export 2:2 stitching route-target import 2:2 stitching exit-address-family

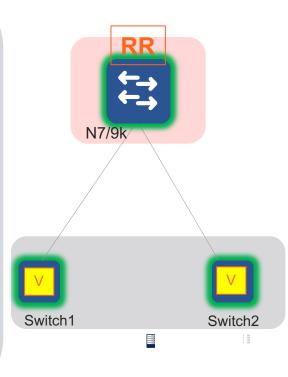
Overlay Configuration- Vxlan Data Plane

Switch1/2 - VTEP Configuration

I2vpn evpn -- # EVPN Control Plane replication-type static router-id Loopback1 – Loopback 1 used for EVPN

! Single Bridge Table/Broadcast Domain (Vlan to Vni mapping)

l2vpn evpn instance 1 vlan-based encapsulation vxlan ! l2vpn evpn instance 2 vlan-based encapsulation vxlan


vlan configuration 11
member evpn-instance 1 vni 11001 - Vlan <> VNI Mapping for Bridging
vlan configuration 12
member evpn-instance 2 vni 11002 - Vlan <> VNI Mapping for Bridging

vlan configuration 901 - Vlan <> VNI Mapping for Routing member vni 900001

interface nve1 - Nve is logical interface where VXLAN packets are encapsulated and decapsulated. no ip address

source-interface Loopback1

host-reachability protocol bgp - **This means BGP control plane is used to exchange updates** member vni 11001 mcast-group 239.0.0.1 – **vni is mapped to mcast groups for Arp Handling** member vni 11002 mcast-group 239.0.0.1 - **vni is mapped to mcast groups for Arp Handling** member vni 900001 vrf tenant1 - **associate-vrf is used for for layer3 vni**

Distributed Anycast Gateway Configuration

Switch1/2 – Anycast Gateway and Host Vlans (To be configured on all VTEPS)

interface Vlan501------ core SVI description connected to 50000 vrf forwarding l3vni50000 vrf forwarding tenant1 ip unnumbered Loopback0

interface GigabitEthernet1/0/1----- access trunk port switchport mode trunk ! interface GigabitEthernet1/0/2---- access vlan port switchport access vlan 10 switchport mode access

EVPN VXLAN- "show commands"

EVPN Mgr Show commands

show l2vpn evpn evi [detail]

show l2vpn evpn mac [detail]

show l2vpn evpn mac ip [detail]

show l2vpn evpn summary

show l2vpn capabilities

L2RIB Show commands for EVPN VXLAN-IRB

show l2route evpn summary # show l2rib topologies [detail] # show l2route evpn mac [detail] # show l2route evpn mac ip [detail] # show l2rib clients [detail] # show l2rib producers [detail] # show l2rib registrations [detail]

SISF show commands

show device-tracking database

show device-tracking database mac

Multicast RIB show commands

show ip mroute

show ip mfib

IP RIB show commands

show ip route vrf xx (xx is VRF name)

IP CEF show commands

show ip cef vrf xx (xx is VRF name)

ARP show commands

show arp vrf xx (xx is VRF name)

EVPN VXLAN- "show commands"

BGP Show commands for EVPN VXLAN-IRB

show bgp l2vpn evpn

show bgp l2vpn evpn route-type 2 <filters>

show bgp l2vpn evpn route-type 5 <filters>

show bgp l2vpn evpn evi context

show bgp I2vpn evpn local-vtep vrf <vrf-name>

L2FIB Show commands for EVPN VXLAN-IRB

show l2fib bridge-domain <ID> detail

show l2fib bridge-domain <ID> address unicast <H.H.H>

show l2fib bridge-domain <ID> vxlan encap

show l2fib bridge-domain <ID> vxlan decap

show l2fib bridge-domain <ID> vxlan mac_oce

NVE show commands

show nve vni

show nve vni <id> detail

show nve peers

VLAN MAC Table command in IOS-MATM, FED MATM, SISF

IOS-MATM: # show mac address-table vlan <id> FED-MATM: # show platform software fed switch active matm macTable vlan xx (xx is vlan #) SISF: # show device-tracking database mac

Cont.

EVPN VXLAN- "debug/trace commands"

EVPN Mgr debug/trace commands

- # debug l2vpn evpn event
- # debug l2vpn evpn event detail
- # show monitor event-trace evpn event all
- # show monitor event-trace evpn error all

L2RIB debug/trace commands

- # debug l2rib event # debug l2rib event detail
 # show monitor event-trace l2rib event all
 # show monitor event-trace l2rib error all
 Note: MAC and MAC/IP event traces are not enabled by
 default in L2RIB. To enable them, use the following
 configuration:
- (config)# monitor event-trace l2rib event include detail (config)# monitor event-trace l2rib event size 1000000

BGP debug/trace commands

debug bgp l2vpn evpn evi context detail
debug bgp l2vpn evpn evi event detail
debug bgp l2vpn evpn nve detail
show monitor event-trace bgp l2vpn evpn

SISF debug/trace commands

debug device-tracking# show device-tracking events

NVE debug/trace commands

- # show evpn log event
- # show nve log event
- # debug nve all

EVPN VXLAN – Troubleshooting steps

Step	Verification show command(s)
0- Verify Underlay IGP/BGP or eBGP is configured properly	IGP and BGP show commands to show BGP peers, IGP adjacencies established
1- Verify Underlay Multicast is configured properly	- sh ip mroute - sh ip mfib - sh ip pim rp
2- Verify L2 VNI is provisioned properly in NVE	sh nve vni
3- Verify EVPN Instance is provisioned properly in EVPN Mgr	sh l2vpn evpn evi xx detail
4- Verify L2 Topology for the Access VLAN is properly provisioned in L2RIB	show I2rib topologies detail
5- Verify EVI context is properly added to BGP	show bgp l2vpn evpn evi context
6a- Verify MAC Table in IOS-MATM (local MACs only) 6b- Verify MAC Table in FED-MATM 6c- Verify MAC entries in SISF	 show mac address-table vlan xx show platform software fed switch active matm macTable vlan xx show device-tracking database mac
7- Verify MAC entries in EVPN Mgr	show I2vpn evpn mac/mac ip (MAC only or MAC/IP route)
8- Verify MAC routes in L2RIB	show l2route evpn mac/mac ip (MAC only or MAC/IP route)

EVPN VXLAN – Troubleshooting steps

Step	Verification show command(s)
9- Verify MAC/IP, Prefix routes in BGP	show bgp l2vpn evpn evi xx (xx is evi #) show bgp l2vpn evpn evi 1 route-type 2 show bgp l2vpn evpn route-type 5
10- Verify MAC routes check in L2FIB	show l2fib bridge-domain xx detail (xx is bridge domain #)
11- Verify Access SVIs, Core SVIs and NVE Interface are all UP	show ip interface brief
12- Verify EVPN Mgr got all L2 and IRB attributes from NVE	show l2vpn evpn evi detail
13- Verify Remote L3 VNIs are received by NVE from BGP	show nve peers
14- Verify Remote MAC/IP route in IP VRF xx	show bgp vpnv4 unicast vrf xx (xx is IP-VRF name)
15- Verify RNH in BGP	show bgp l2vpn evpn rnh vrf xx (xx is IP-VRF name)
16- Verify Remote IP route in RIB	show ip route vrf xx (xx is IP-VRF name)
Execute show tech command	show tech-support evpn show tech-support evpn redirect xx (xx is location to collect info)

The bridge to possible